skip to main content


Search for: All records

Creators/Authors contains: "Pascal, Tod A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the role of ferroelectric polarization in modulating the electronic and structural properties of crystals is critical for advancing these materials for overcoming various technological and scientific challenges. However, due to difficulties in performing experimental methods with the required resolution, or in interpreting the results of methods therein, the nanoscale morphology and response of these surfaces to external electric fields has not been properly elaborated. In this work we investigate the effect of ferroelectric polarization and local distortions in a BaTiO 3 perovskite, using two widely used computational approaches which treat the many-body nature of X-ray excitations using different philosophies, namely the many-body, delta-self-consistent-field determinant (mb-ΔSCF) and the Bethe–Salpeter equation (BSE) approaches. We show that in agreement with our experiments, both approaches consistently predict higher excitations of the main peak in the O–K edge for the surface with upward polarization. However, the mb-ΔSCF approach mostly fails to capture the L 2,3 separations at the Ti–L edge, due to the absence of spin–orbit coupling in Kohn–Sham density functional theory (KS-DFT) at the generalized gradient approximation level. On the other hand, and most promising, we show that application of the GW/BSE approach successfully reproduces the experimental XAS, both the relative peak intensities as well as the L 2,3 separations at the Ti–L edges upon ferroelectric switching. Thus simulated XAS is shown to be a powerful method for capturing the nanoscale structure of complex materials, and we underscore the need for many-body perturbation approaches, with explicit consideration of core-hole and multiplet effects, for capturing the essential physics in these systems. 
    more » « less
  2. This is a correction to the original manuscript. The original manuscript had missing text describing funding sources. 
    more » « less
    Free, publicly-accessible full text available September 13, 2024
  3. All-climate temperature operation capability and increased energy density have been recognized as two crucial targets, but they are rarely achieved together in rechargeable lithium (Li) batteries. Herein, we demonstrate an electrolyte system by using monodentate dibutyl ether with both low melting and high boiling points as the sole solvent. Its weak solvation endows an aggregate solvation structure and low solubility toward polysulfide species in a relatively low electrolyte concentration (2 mol L −1 ). These features were found to be vital in avoiding dendrite growth and enabling Li metal Coulombic efficiencies of 99.0%, 98.2%, and 98.7% at 23 °C, −40 °C, and 50 °C, respectively. Pouch cells employing thin Li metal (50 μm) and high-loading sulfurized polyacrylonitrile (3.3 mAh cm −2 ) cathodes (negative-to-positive capacity ratio = 2) output 87.5% and 115.9% of their room temperature capacity at −40 °C and 50 °C, respectively. This work provides solvent-based design criteria for a wide temperature range Li-sulfur pouch cells. 
    more » « less
  4. Lithium metal batteries are capable of pushing cell energy densities beyond what is currently achievable with commercial Li-ion cells and are the ideal technology for supplying power to electronic devices at low temperatures (≤−20 °C). To minimize the thermal management requirements of these devices, batteries capable of both charging and discharging at these temperatures are highly desirable. Here, we report >4 V Li metal full cell batteries (N/P = 2) capable of hundreds of stable cycles down to −40 °C, unambiguously enabled by the introduction of cation/anion pairs in the electrolyte. Via controlled experimental and computational investigations in electrolytes employing 1,2-dimethoxyethane as the solvating solvent, we observed distinct performance transitions in low temperature electrochemical performance, coincident with a shift in the Li + binding environment. The performance advantages of heavily ion-paired electrolytes were found to apply to both the cathode and anode, providing Li metal Coulombic efficiencies of 98.9, 98.5, and 96.9% at −20, −40, and −60 °C, respectively, while improving the oxidative stability in support of >4 V cathodes. This work reveals a strong correlation between ion-pairing and low-temperature performance while providing a viable route to Li metal full batteries cycling under extreme conditions. 
    more » « less
  5. Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO3 thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER). Surface spectroscopy and ab initio DFT +U calculations of the well-defined (001) surfaces indicate that an upward polarized surface reduces the work function relative to downward polarization and leads to a smaller HER barrier, in agreement with the higher activity observed experimentally. Employing ferroelectric polarization to create multiple adsorbate interactions over a single electrocatalytic surface, as demonstrated in this work, may offer new opportunities for nanoscale catalysis design beyond traditional descriptors. 
    more » « less